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For over a century, research has shown that human perceptual decisions are
systematically influenced by prior perceptual experiences, aphenomenon
known as serial dependence. It has recently been suggested that serial

dependence canimprove perceptual decision-making by mitigating
uncertainty and reducing variability in perceptual estimates—leading to
asuperiority effect. However, this claim remains largely untested. Here
we present a large-scale analysis, compiling the most extensive dataset of

serial dependence studies from the past decade. Contrary to the proposed
superiority effect, our findings indicate that serial dependence deteriorates
rather thanimproves perceptual decision-making. These results challenge
prevailing models and emphasize the need to rethink serial dependence and

itsrole in human perception, cognition and behaviour.

Overthe pastdecade, anunprecedented number of studies have investi-
gated the phenomenon of serial dependence, in which human decisions
arebiased towards recent perceptual history' . Evident across a wide
range of paradigms and stimuli, serial dependence has emerged as
one of the most pervasive effects in human perception and cognition®.

A classic example is the systematic bias observed in tasks where
participants reproduce a basic feature of a visual stimulus, such as its
orientation, across aseries of trials. Participants’reports are attracted
towards the feature of the stimulus shown on preceding trials—reveal-
ing a positive or attractive form of serial dependence that appears
stable and reliable within individuals®’. Strikingly, serial dependence
extends beyond basic visual features such as orientation, colour and
motion**" to more complex and abstract judgements, including
emotion'", aesthetics'®, sense of agency" and even attractivenessin
online dating'®. This suggests that serial dependence is not merely a
low-level perceptual bias but a fundamental aspect of brain function,
pervasive across species and task domains*'*?°,

The ubiquity of serial dependence has inspired novel compu-
tational models of perception and cognition'"*2* and motivated
clinical research on its relevance in both typical and atypical brain

function®?. However, the mechanisms underlying serial depend-
ence and its implications for perception remain debated’. Is serial
dependence abug or afeature? A prevailing view suggests that serial
dependence serves a beneficial role: by integrating past and present
stimuli, the perceptual system constructs a coherent and temporally
smoothed representation of the world, reducing uncertainty and
improving perceptual performance??®, Thisideais central to influen-
tial models of serial dependence—in particular, the cue integration®
and Bayesian models®%.

These models, developed to explain the bias due to serial depend-
ence, also predict clear effects on the variability of perceptual esti-
mates, or error scatter. Specifically, when consecutive stimuli—such
asorientations or motion directions—are highly similar, these models
predict a decrease in error scatter (that is, more precise perceptual
reports) compared with ahypothetical scenario without serial depend-
ence (See ‘Results’ section for model predictions). We refer to this as
asuperiority effect®®, as performance improves due to serial depend-
ence. However, this prediction remains largely untested.

While there is substantial evidence for systematic biases in per-
ceptual judgements due to serial dependence, empirical support for

'Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 2Department of Psychosocial
Science, Faculty of Psychology, University of Bergen, Bergen, Norway. *Psychophysics and Neural Dynamics Lab, Radiology Department, Lausanne
University Hospital and University of Lausanne, Lausanne, Switzerland. “The Sense Innovation and Research Center, Lausanne, Switzerland.

e-mail: ayberk.ozkirli@gmail.com

Nature Human Behaviour

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Article

https://doi.org/10.1038/s41562-025-02362-8

superiority effects is scarce, with only a few studies evaluating this
phenomenon®?**!, As research on serial dependence continues to
grow and expand across domains, testing this key prediction is essen-
tial for understanding the true functional role of serial dependencein
perception and cognition.

Here we tested the superiority effect by compiling the largest
existing collection of datasets from the past decade, comprising 49
datasets from 22 studies’*#1%?>2%2%325 with more than half a million
trials of orientation and motion direction reproduction tasks. In a
targeted analysis, we tested whether human perceptual performance,
quantified as the error scatter in reproduction responses, improves
as a function of the similarity between consecutive visual stimuli, as
predicted by the superiority effect. Specifically, we tested the predic-
tion that perceptual precision should improve (that is, error scatter
should be lower) when consecutive stimuli are similar compared with
when they are highly dissimilar.

Contrary to the prevailing hypothesis, we found no evidence for
a superiority effect. Instead, our results provided decisive evidence
againstit: perceptual precision remained comparable when consecu-
tive stimuli were either identical or highly dissimilar, with a deteriora-
tionin between.

These findings challenge the notion that serial dependence is an
unequivocally beneficial feature and call for arethinking of its role in
perception, cognition and behaviour. Furthermore, by compiling the
largest dataset on serial dependence to date—including single-trial
datainboth rawand preprocessed formats using astandardized pipe-
line—this work provides an unprecedented resource for the research
community to systematically test theoretical predictions, replicate
findings and explore novel questions about the mechanisms and con-
sequences of serial dependence.

Results

We analysed 49 datasets extracted from various experiments and
conditions, involving 22 studies and more than half a million trials
(Methods). The datasetsincluded continuous reproduction tasks with
orientation or motion stimuli (Fig. 1and Table1). Inthese tasks, observ-
ers were presented with a sequence of trials and asked to reproduce
the relevant feature—orientation or motion direction—on each trial
through adjustment responses.

Serial dependence was evident as a bias in adjustment errors
towards the feature shown on the preceding trial, particularly for
small absolute angular differences between current and previous
stimuli (]4]; Methods and Fig. 2). Despite variations in paradigms,
stimuli and conditions, most datasets showed consistent positive
serial dependence: adjustment errors were systematically biased
towards the previous trial feature, with a positive effect across all
datasets (mean, 1.06°; median, 0.99°). The error scatter, quantified
asthe overall standard deviation of adjustment errors (Fig. 1c), varied
substantially across datasets (Fig. 2).

According to the hypothesis that serial dependence enhances
perceptual performance, leading to a superiority effect, performance
should improve and error scatter should decrease when |4| between
the current and previous stimuli is small or zero (that is, when the
stimuli are highly similar). Figure 3a illustrates explicit examples of
this predicted pattern, derived from simulated data based on the cue
integration and Bayesian models at varying levels of overall scatter.
Inboth models, the current and previous stimuli are integrated while
accounting for the uncertainty in their perceptual representations,
albeit through different computational principles (see ‘Reference
models’ in Supplementary Information).

As shown, both models predict the characteristic bias pattern
observed in many studies®® but also a specific effect on scatter: error
scatter decreases below the baseline imposed in the simulations, as
the similarity between the current and previous stimuli increases
(Methods). In particular, both models predict higher precision
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Fig.1| Experimental paradigms and serial dependence. a,b, Illustration of
two widely used paradigms: orientation reproduction tasks (a) and motion
directionreproduction tasks (b). In orientation tasks, participants reproduced
the perceived tilt of a Gabor patch using a circular response tool. In some
datasets, amask was presented after the stimulus to minimize after-effects. In
motion direction tasks, participants reported the perceived direction of motion
using aresponse tool rotating within a360° circular space. Panel billustrates a
post-cueing paradigm adapted from ref. 9 (Experiments 1-2). Asummary of the
paradigms is provided in Table 1, with further details available in the referenced
studies. ¢, Error distribution for an example subject in an orientation task.
Single-trial errors are plotted against the difference between the target feature
(for example, orientation) in two consecutive trials (4, past minus present, in
degrees). The plot exhibits a typical attractive bias towards the past, with positive
errors when 4 is positive and negative errors when 4 is negative, particularly for
small 4 values. The labels ‘Iso’,‘Mid’ and ‘Ortho’ indicate error distributions when
the difference between the current and prior stimulus orientations is 0° (iso),
45° (mid) or 90° (ortho). The plot alsoillustrates the process of error folding, in
which errors for negative 4 values (highlighted in blue) are flipped in sign and
combined with their corresponding positive 4 values (in orange). This procedure
helps characterize the error distribution in the presence of bias (see Methods for
details). The error scatter, defined as the standard deviation of the folded error
distribution (shown in grey), is then computed under the assumption that errors
are symmetrically distributed around 4 = 0°.

(that is, lower scatter) in the iso condition (|4] = 0°) than in the mid
(14] = 45°) and ortho (4| = 90°) conditions—an effect that would not
be observedin the absence of serial dependence.

To test for superiority effects in empirical data, we first mod-
elled the error scatter as a function of |4|, using a weighted, flexible-
degree polynomial fit at the individual grouping level (Methods).
Stimulus-specific biases were removed prior to modelling to pre-
vent critical confounds (see ‘Confounding effect of stimulus-specific
biases’ in Supplementary Information). The pattern clearly revealed

Nature Human Behaviour

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Article

https://doi.org/10.1038/s41562-025-02362-8

Bias Error scatter
T
1. Abreo et al. (2023) - S———
2. Blondé et al. (2023) |—— —————— “m—
3. Ceylan and Pascucci (2023) — e B
4. Ceylan et al. (2021) E1C1 e e om—
5. Ceylan et al. (2021) E1 C2 —— —“—
6. Ceylan et al. (2021) E2 C1 — e -
7. Ceylan et al. (2021) E2 C2 —am——— o
8. Chetverikov and Jehee (2023) C1 + O
9. Chetverikov and Jehee (2023) C2 — o 00—
10. Cicchini et al. (2018) } o .
11. Fischer and Whitney (2014) ] O . ]
12. Fischer et al. (2020) E1 T .
13. Fischer et al. (2020) E2 1 ol
14. Fischer et al. (2020) E3 i o

15. Fischer et al. (2020) E4 I
16. Fritsche and deLange (2019) C1 I
17. Fritsche and delLange (2019) C2 } o)

18. Fritsche et al. (2020) E1 C1
19. Fritsche et al. (2020) E1 C2
20. Fritsche et al. (2020) E2 C1 o
21. Fritsche et al. (2020) E2 C2 o
22. Fritsche et al. (2020) E3 C1 |
23. Fritsche et al. (2020) E3 C2 !
24. Gallagher and Benton (2022) C1 }
25. Gallagher and Benton (2022) C2 |
26. Geurts et al. (2022) |

27. Houborg et al. (2023) E1 |
28. Houborg et al. (2023) E2 1
29. Houborg et al. (2023b) E1 !
30. Houborg et al. (2023b) E2 I
31. Kondo et al. (2022) E1 }

32. Kondo et al. (2022) E2 i

33. Kondo et al. (2022) E3 1

34. Kondo et al. (2022) E4 +

35. Lau and Maus (2019)

36. Moon and Kwon (2022)

37. Moon et al. (2023) E1 L

38. Moon et al. (2023) E2 !

39. Moon et al. (2023) E3 |

40. Ozkirli and Pascucci (2023) E1 C1 P - R—————
41. Ozkirli and Pascucci (2023) E1 C2 ——
42, Ozkirli and Pascucci (2023) E2 C1 —
43. Ozkirli and Pascucci (2023) E2 C2 ———
44. Ozkirli and Pascucci (2023) E3 C1 ’
45. Ozkirli and Pascucci (2023) E3 C2 : .
46. Pascucci et al. (2024) —
47. Sadil et al. (2024) C——
48. Samaha et al. (2019) C1 —
49. Samaha et al. (2019) C2 ‘ -
I
. I
Median - -
. . | . . . . . . . .
-6 -3 0 3 6 0 10 20 30 40 50 60
Repulsive Attractive

Error bias (°)

Fig. 2| Summary of bias and error scatter across 49 datasets. The bias (left)
iscomputed as the average folded error within the 0-45° |4] range (Methods).
Positive values indicate an attractive bias towards the previous trial’s orientation
or motion direction, while negative values indicate a repulsive bias away from

it. The error scatter (right) is quantified as the overall standard deviation of
reproduction errors (x axis). The y axis lists the datasets, with the median across
all datasets shown at the bottom (grey box plots and distributions). Each dataset
is visualized using box plots overlaid on individual participant distributions, with
dots representing individual subject values. In the median plot at the bottom,

Error standard deviation (°)

each dot represents the average bias of a dataset. In the bias plot (left), the
central white circles, positioned at the median of each distribution, represent
the reference effect size (g = 0.2). The surrounding coloured circles, outlined in
black, indicate the effect size of each dataset relative to this reference. In the
error scatter plot (right), the white dots mark the median value for each dataset.
Inthe box plots, the lower and upper edges of the box correspond to the 25th and
75th percentiles, and the whiskers extend to the most extreme values within

1.5 times the interquartile range from the upper and lower quartiles. The violin
plots represent the distribution of the data using a kernel density estimate.

an inverted U-shaped relationship, with error scatter increasing for
intermediate |4| and decreasing again for larger |4| values (Fig. 3b).

We then evaluated differences in the error scatter magnitude
estimated with the polynomial fit at the three key |4| values using a
linear mixed-effects model (LMM). The fixed effectin the model wasa
categorical predictor with the three angular differences iso, mid and
ortho. TheLMM accounted for random effects at multiple hierarchical
levels, including participants, datasets and their nested interactions
(see Methods for a detailed description).

The fixed-effect estimates revealed asignificantincreaseinerror
scatter fromiso to mid (¢,o55 = 8.62, P < 0.001). However, no significant
difference was observed betweeniso and ortho (¢, = 0.36, P=0.717),
indicating comparable error scatter (Fig. 4). Importantly, while het-
erogeneity in error scatter atiso was substantial across observers and
experiments, the relative modulation by stimulus similarity (that is,
differences betweeniso and mid and betweeniso and ortho) was highly
consistent (see ‘Assessing heterogeneity in LMM results’ in Supplemen-
tary Information), and the overall pattern was comparable between
orientation and motion stimuli (Supplementary Fig. 7).

To further evaluate these findings, we fit asecond, reduced LMM
by merging the iso and ortho categories. A Bayesian information cri-
terion (BIC) comparison between the fulland reduced models yielded
a ABIC of —67.84, resulting in a Bayes factor (BF,.qyced over fun) Of >100 in

favour of the reduced model. This provides decisive evidence against
the existence of asuperiority effect due to serial dependence. That is,
error scatter was comparable whether the current and previous stimuli
were identical (iso) or differed by 90° (ortho).

These findings were further validated using anon-parametric bin-
ning approach (see ‘Control analysis’in Supplementary Information).
Note that the two reference models, the cue integration and Bayesian
models, always predict areduction of the error scatter in the iso com-
pared with the ortho condition, thus predicting a patternincompatible
with our findings (Fig. 3a).

Discussion

Serial dependence is a pervasive aspect of human behaviour and
has become an expanding field of research in recent years. Emerg-
ing perspectives suggest that integrating past and present sensory
information serves a functional role by reducing the variability of
perceptual estimates when consecutive stimuli are similar, leading
to a superiority effect—that is, enhanced perceptual precision**?,
In this study, we tested this hypothesis using the largest collection
of single-trial data employed in serial dependence research over
the past decade. We analysed 49 datasets, comprising over half a
million trials, using standardized procedures while controlling for
potential confounds. Contrary to the predicted superiority effect,
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Fig. 3| Bias and error scatter as functions of |4|in model predictions and
empirical data. a, Predictions from two models of serial dependence (see
‘Reference models’ in Supplementary Information for detailed formulations): the
cueintegration model (first column) and the Bayesian model (second column),
showing bias (first row) and error scatter (second row) as functions of |4|. The
three key angular differences analysed (iso, mid and ortho) are marked on the

x axis. The colour gradient from dark to light violet represents simulations
withincreasing baseline scatter (see ‘Reference models’ in Supplementary
Information), ranging from 5°to 20°, respectively. In the bias plots (first row),
positive values on the y axis indicate attraction towards the previous stimulus
feature. In the scatter plots (second row), the y axis represents error scatter

Distance (|4])

normalized to the baseline level (that is, the baseline scatter imposed in each
simulation (Supplementary Information), here highlighted by the dashed
blackline). Note that we simulated a broad range of baseline scatter values to
show that, regardless of the value simulated, the error scatter at iso is always
predicted to be smaller than thatin the ortho condition for both models.

b, Empirical results from 49 datasets, showing bias (top) and error scatter
(bottom) as functions of |4|. The black lines represent average smoothed data
across all grouping levels, using a kernel of 11° for both bias and scatter. The
shaded areas represent 95% confidence intervals (Cls). In the error scatter plot,
thebluelineand shaded intervals represent estimations from the best-fitting
polynomial model (Methods and Results).

our results provide no evidence that serial dependence improves
perceptual precision. Instead, our findings suggest a detrimental
effect on perceptual performance.

We investigated how serial dependence influences error scatter,
aninverse measure of perceptual precision, in orientation and motion
directionreproduction tasks—two of the most widely used paradigms
in the field’. Specifically, we compared error scatter across three key
angular differences between consecutive stimuli: iso (identical stimuli),
mid (45° difference) and ortho (90° difference). If serial dependence
indeed enhances perceptual precision, error scatter should be the
lowest in the iso condition, where current and previous stimuli are
identical®**. However, we found comparable error scatter between
theiso condition (thatis, when consecutive stimuliwere identical) and
ortho condition (thatis, when stimulus differences were maximal), with
anincrease atintermediate differences (mid condition).

This pattern deviates in a crucial way from predictions made by
the dominant normative models of serial dependence, including cue
integration and Bayesian frameworks*******!, These models assume
that recent perceptual history acts as a prior, combining with current
sensory evidence to minimize uncertainty. Consequently, they predict
thelowest error scatter when past and present stimuli strongly overlap
(forexample, atiso), with larger error scatter at greater angular differ-
ences (for example, at the mid and ortho conditions).

Although the models differ in their specific predictions about the
shape of this pattern (Fig. 3a), none predict that error scatter at the
ortho distance will be comparable to that at the iso distance. Rather,
they assume that as stimuli become more dissimilar, the influence of

serial dependence weakens®?, and performance approaches baseline
levels where serial dependence has little to no effect. Thus, these mod-
els and the related views predict always lower error scatter in the iso
conditionthaninthe ortho condition. Our results from this large-scale
analysis, however, clearly contradict these predictions: error scatter
remained comparable between the iso and ortho conditions.
While our study systematically assesses the effects of serial
dependence on error scatter in a large sample of datasets, there
have been a few previous attempts to investigate these effects
on single studies?>**"°*®!_For instance, in Fritsche et al.” (data-
sets 18-23), two out of three experiments qualitatively supported
superiority effects, while the third resembled the overall pattern
observed here. In the Supplementary Information, we show that
such superiority-like patterns emerge spuriously frominteractions
between stimulus-specific biases and angular differences between
currentand previous stimuli. Ifuncorrected, these biases introduce
systematic variance inreproduction errors, confounding estimates
of error scatter andits truerelation with serial dependence, eventu-
ally leading to artificial differences betweeniso and ortho conditions
(see ‘Confounding effect of stimulus-specific biases’in Supplemen-
tary Information). Across several control analyses, we show that
these stimulus-specific modulations—previously unknown and
overlooked in earlier work—are unrelated to classic serial depend-
ence effects (Supplementary Fig. 5b) and may represent a distinct
form of history dependence that warrants dedicated investigation.
After we controlled for this confound, both the artificial increase
in overall error scatter and the apparent superiority effects largely
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Fig. 4 |Pairwise comparisons of error scatter across conditions and model
predictions. a, Observed differences in error scatter for each dataset and each
pairwise comparison (iso-mid, iso-ortho and ortho-mid), alongside model
predictions based on the median scatter across the 49 datasets. The box plots
illustrate the distribution of participant-level differences for each comparison
within each dataset (first 49 rows) and the median distribution across all datasets
(final row). In each row, the central white circle, positioned at the median of

the distribution, represents the reference effect size (g = 0.2). The surrounding
coloured circle, outlined in black, indicates the effect size of each dataset relative
to this reference. Two-tailed paired ¢-tests showed that the median error scatters
of datasets were significantly different between iso and mid (¢,s=—-8.3, P < 0.001)

Difference (°)

and between ortho and mid (¢, =-8.27, P< 0.001), but not between iso and
ortho (¢,5=-0.52, P=0.606).b, Summary of the observed pattern, showing the
distribution of median values from the empirical data (N = 49, grey) compared

to model predictions (Bayesian modelin dark blue, cue integration modelin
light blue). The grey box plots in this panel provide azoomed-in view of the final
rows froma. Inthe box plots in both panels, the lower and upper edges of the box
correspond to the 25th and 75th percentiles, and the whiskers extend to the most
extreme values within 1.5 times the interquartile range from the upper and lower
quartiles. The violin plots represent the distribution of the data using a kernel
density estimate.
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disappeared across datasets, including those from Fritsche et al.”
(Supplementary Fig. 2).

Despite our approach toremoving confounds and standardizing
preprocessing, we cannot rule out the possibility that subtle superiority
effects exist or may be better revealed with paradigms other thanrepro-
duction tasks®®. However, any such effect, if existing, must be extremely
small compared with the dominant pattern: arobustincreaseinerror
scatter at intermediate angular differences (the mid condition). This
finding, not fully captured by existing models, underscores the need
for revised theoretical accounts of how serial dependence influences
the variability of perceptual estimates.

What could explain comparable performance when consecutive
stimuli either maintain or break continuity? One possibility is the
interplay between attractive and repulsive serial dependence effects,
which have been proposed as competing mechanisms at different
processing levels™*"%2, Repulsive effects, often observed as negative
deflections at the tails of the serial dependence bias function (Fig. 3b,
top), are typically attributed to low-level adaptation mechanisms'>".
Such mechanisms have been linked to enhanced neuronal selectivity
atorthogonal orientations following briefadaptation®®, whichin turn
couldinfluence perceptual precision. However, to our knowledge, no
studies have demonstrated that repulsive serial dependence effects
selectively reduce error scatter for large stimulus differences, at least
withinthe paradigms commonly used. Moreover, the studies analysed
here were designed to enhance attractive serial dependence while
minimizing adaptation and repulsive effects (for example, through
brief, low-contrast stimuli and noise masks).

Instead, we propose that the error scatter pattern reflects inter-
ference from contextual stimuli, a phenomenon widely observed in
spatial vision®***** and working memory®*’. In this framework, the
representation of the current stimulus results from a superposition
of the actual stimulus and contextual influences. When consecutive
stimulishareidentical features, interference is minimal, because their
representations fully overlap. However, as differences in stimulus
featuresincrease, interference distorts the representation, leading to
larger errors. Thisinterpretation aligns with our results, particularly if
interference effects diminish when stimulibecome highly discernible,
producing comparable performance in the iso and ortho conditions.
Inthe context of serial dependence, this suggests that lingering traces
of previous stimuli impair rather than enhance perceptual estimates
by interfering with current representations.

Thisaccountimplies fundamentally different effects and mecha-
nisms thanthose proposed by accounts predicting a superiority effect.
While we highlightinterference as a plausible alternative explanation,
the main purpose of this work was the mega-analysisitself, rather than
advocatingforanew model. Future studies willbe needed to determine
whether the observed error scatter patterns are better explained by
the coexistence of two distinct beneficial mechanisms—one attractive
atiso and the other repulsive at ortho—or, more parsimoniously, by
interference effects that scale with stimulus dissimilarity.

Our findings also relate to broader frameworks linking the
effects of temporal and spatial context under a shared computa-
tional mechanism®®. These frameworks suggest that contextual inte-
gration—whether across time (serial dependence) or space (visual
crowding)—aims to minimize uncertainty. A recent study on visual
crowding, forinstance, reported that flankers iso-oriented to a target
reduced error scatter compared with orthogonal target-flanker ori-
entations or a target-only condition®’. However, a replication study
failed to find such superiority effects, instead revealing comparable
error scatter for iso and ortho flankers, closely mirroring the pattern
observed in our serial dependence study®. This result is consistent
with prior reports in the crowding literature’® ">, Notably, in spatial
crowding studies, a clear baseline can be established by measuring
error scatter in the absence of flankers, making it easier to isolate
contextual effects. Thus, our findings, together with recent resultsin

visual crowding, suggest that error scatter—and therefore the preci-
sion of perceptual estimates—is comparable when contextual stimuli
are either highly similar or highly dissimilar to the target stimulus,
challenging the assumption that perceptual precision necessarily
benefits from contextual effects.

We propose that interference should be considered a viable alter-
native to existing models, offering a parsimonious explanation for
the observed deviations from normative predictions. However, other
novel or existing models—such as those based on working memory
dynamics or entanglement of sensory signals**’*—should be evaluated
against existing frameworks to determine which best accounts for the
error scatter pattern observed in our study. This does not imply that
integrating past and present sensory information is universally detri-
mental—perceptual continuity and stability remain key adaptive func-
tions of the brain”®, Nor do we claim that Bayesian and cue integration
models are fundamentally incorrect. The ability to integrate multiple
sources of informationis a core function of the brain, and these models
provide valuable predictive frameworks”. However, in the context of
classic serial dependence paradigms, where stimuli are randomized
and independent across trials, there is no functional advantage to
combining past and present sensory inputs. If traces of prior stimuli
persist, itis plausible that they interfere with current perceptual deci-
sions and thus deteriorate performance.

Conversely, the amount of interference may be decreased when
stimuli are temporally correlated. If serial dependence were an adap-
tive mechanism, one would expectit to be strongest under conditions
of temporal regularity. Paradoxically, however, studies introducing
temporal correlationsin stimulus sequences have reported weak serial
dependence effects®®, or even areductioninserial dependencerelative
to uncorrelated sequences, and stronger repulsive biases of stimulus
history®*’¢. This apparent paradox closely parallels effects observed in
spatial vision: in visual crowding, interference from flankers in target
recognitionisreduced when flankers forma coherent spatial configu-
ration—a phenomenon known as uncrowding®*””. Crucially, however,
performance in crowding and uncrowding is never superior to base-
line performance with the target alone®. The pattern of error scatter
reported here suggests that an analogous form of interference—one
that current models fail to capture—is also at play in serial dependence.

In sum, our findings impose important constraints on broad
claims about the role of serial dependence across different tasks and
processing domains. We provide strong evidence against the idea
that serial dependence enhances perceptual precision. Instead, our
results suggest that serial dependence may be better explained as a
formofinterference, whichincreases response variability rather than
reducingit. These findings challenge prevailing theories and call fora
conceptual and computational reassessment of serial dependence. To
supportthis, we provide an open-access, automated analysis pipeline,
enabling researchers to contribute additional datasets and expand a
continuously growing large-scale analysis of serial dependence. This
open framework will allow for systematic testing of alternative models,
fostering a more comprehensive understanding of how perceptual
history shapes behaviour.

Methods

Dataset selection and exclusion criteria

We conducted a search on PubMed using the keyword ‘serial depend-
ence’ for studies published between 2014 (from the initial study of
Fischer and Whitney’) and 2024. Studies were selected on the basis of
the following criteria:

(1) Single-trial data publicly available online

(2) Adjustment tasks involving orientation or motion stimuli
with circular responses (for example, participants reproducing
the orientation of a Gabor patch or the motion direction of
dot clouds)
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Table 1| The summary of datasets included in the final
analysis, listed alphabetically

ID Study Reproduce Datasets N Alltrials Clean
trials

1 Abreo etal.*>**  Orientation 1 36 6,754 6,335

2 Blondé Orientation 1 17 2,380 2,228
etal**®

3 Ceylanand Orientation 1 20 6,000 5,822
Pascucci®®*

4 Ceylanetal®*” Orientation 4 48 19,200 18,662

5 Chetverikov Motion 2 18 19,836 8,389
and Jehee®®*

6 Cicchini Orientation 1 6 12,300 11,833
etal.?*°

7 Fischer and Orientation 1 4 3,328 3197
Whitney'™

8 Fischer etal.**' Motion 4 109 176,256 86,343

9 Fritsche and Orientation 2 34 19,584 19,089
de Lange™

10 Fritsche etal.”® Orientation 6 7 67,148 65,197

n Gallagherand  Orientation 2 20 16,420 15,899
Benton****

12 Geurtsetal.*®  Orientation 1 32 15520 14,854

13 Houborg Orientation 2 31 6,200 5,852
etal.’®*

14 Houborg Orientation 2 32 31,720 31,168
et aL47,59

15 Kondoetal®*  Orientation 4 76 76,000 73,234

16 Lau and Orientation 1 29 15,404 13,732
Maus*®4°

17 Moon and Motion 1 8 13170 6,792
Kwon'%%©

18 Moon etal”**  Motion 3 24 39,330 20,466

19 Ozkirliand Orientation 6 56 22,328 21,622
Pascucci®**

20 Pascucci Orientation 1 26 20,800 13,512
etal.?®*®

21 Sadil et al.>®* Orientation 1 16 24,240 23,537

22 Samaha Orientation 2 20 5,930 5,501
etal.>*®

Total 49 733 619,848 473,264

The analysis included 22 studies, many of which featured multiple experiments and
repeated-measures designs with multiple conditions. These were preprocessed separately,
resulting in 49 datasets, 733 globally unique participants and a total of 619,848 trials. After
data cleaning and restricting of the angular difference (|A]) to <90°, 473,264 trials remained.
Motion datasets had a notable reduction in trial counts due to this restriction. *Data received
through communication with the original authors.

(3) Trial-by-trial orientation or motion direction changes (4)
covering 0° to £90°, using uniform or randomly determined
trial-by-trial changesin 4.

Fromthe 198 studiesidentified in the search, 20 met these criteria
(highlighted in orange in Supplementary Table 1). However, because
the dataset from ref. 29 overlapped with that from ref. 62, the final
count from the database effectively comprised 19 unique studies.
Additionally, three studies that satisfied the inclusion criteriabut were
not partof the PubMed search results were included®***, resulting in
22 studiesin total.

The selected studies are summarized in Table 1, along with key
information (for detailed descriptions of each task and apparatus,
please refer tothe original studies). Of the 22 studies included, several

featured multiple experiments and repeated-measures designs with
various conditions. To account for the potential influence of these
conditions on the strength of serial dependence and error scatter,
each experiment and within-experiment condition was treated as a
separate dataset. This resulted in a total of 49 datasets, comprising
733 participants and 619,848 trials.

Data preprocessing

Data processing was done by using MATLAB v.2023b’®. To ensure con-
sistency in the analysis pipeline, we applied astandardized, minimum
data-cleaning procedure to all datasets. Itisimportant to note that this
procedure, along with the resulting estimates, may differ from those
used inthe original studies.

The preprocessing involved two key steps: removing outliers
and correcting for stimulus-specific bias (for example, non-uniform
error distribution across orientations or motion directions). Below,
we outline the rationale and approach used for each step.

Removal of outliers. Outlier errors can compromise estimates of serial
dependence effects, in terms of both bias and variability””. Several
approaches to outlier removal have been previously used, such as
excluding errors above or below an arbitrary threshold or removing
values that deviate by a certain number of standard deviations from
the mean (typically three standard deviations)”. Here we adopted a
two-stage non-parametric approach based on quartiles and the inter-
quartile range, opting for a robust, assumption-free method.

First, we marked as outliers all absolute errors greater than 90°.
This step was applied only to datasetsinvolving motion directionjudge-
ments, where errors exceeding 90° indicated reports of the orthogo-
nal or opposite motion direction. This helped avoid interpretational
issues in cases where participants may have confused opposite motion
directions. In orientation tasks, errors were already constrained to a
maximum of 90° due to the circular nature of the 0-179° scale, with
errors calculated asthe acute angle. Additionally, trials with adjustment
times (when available) exceeding 10 seconds were excluded.

In the second stage, we used the MATLAB isoutlier function with
the‘quartiles’ method. This approachidentifies outliers as any errors
more than 1.5 interquartile ranges above the upper quartile or below
the lower quartile. This procedure was applied separately for each
participant, experiment and condition. Only trials with |4| < 90° that
were notidentified as outliersin either of the two stages were included
in the subsequent analyses. This choice was motivated by the fact
that judgements regarding motion directions that differ by 180° can
be influenced by the orientation information contained in motion
streaks®***"”’, introducing potential confounds where 0° and 180°
might be represented in asimilar, rather than orthogonal, way.

Removal of stimulus-specific biases. Adjustment responses with
circular features (for example, orientation or motion direction) are
systematically affected by stimulus-specific biases, where errors
are non-uniformly distributed around the actual stimulus values.
These biases often manifest as deviations away from cardinal direc-
tions and toward oblique angles. While such stimulus-specific biases
are typically considered independent of serial dependence effects,
they introduce additional variance in the error distribution. To
address this, several studies have employed techniques that remove
these biases, such as fitting polynomial or sinusoidal functions to the
error as a function of the stimulus angle and using the residuals for
further analysis™*>*¢%,

Here we used a similar residualization approach while account-
ing for the circular nature of the stimuli in orientation and motion
direction tasks. Specifically, we fitted the errors with a circular-linear
model, using a set of periodic basis functions defined by the sine and
cosine of the stimulus angle presented on each trial, up to the sixth
harmonic. This set of periodic predictors, along with an intercept to
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account for any systematic bias in reporting features as more clock-
wise or counterclockwise, was fitted to the errors using ordinary
least squares regression via the pseudoinverse. The pseudoinverse
ensured numerical stability and minimized the issue of multicollin-
earity. This approach effectively removed periodic stimulus-specific
biases (Supplementary Fig. 1) and helped avoid drastic confounds in
the estimation of the error scatter (Supplementary Figs. 3 and 4). As
an alternative approach, we also used the circhelp package in R®*?to
remove orientation bias confounds from each dataset, obtaining fully
comparable results (not shown).

Modelling the error scatter. As described above, the data were first
restricted to trials with |4] < 90° that were not classified as outliers (76%
of all trials). Since serial dependence effects are generally symmetric
for negative and positive 4 (previous minus current orientation), we
applied a folding approach””*¢, This method involved flipping the
sign of errors associated with negative 4 values to align them with
their corresponding positive 4 values (Fig. 1c). This folding approach
removed theinfluence of the serial dependence biasin the estimate of
error scatter, while also doubling the number of data points per |4| and
increasing the robustness of error scatter estimation.

After the folding step, the error scatter for each |4]| available
for that participant and condition was calculated as the standard
deviation of the errors within that |4]. Any |4| with only one trial was
excluded from further analysis, as its standard deviation would be
zero. Therelationship between error scatter and |4| was thenmodelled
using polynomial fits, conducted separately at the level of experi-
ment-participant-condition (that is, grouping level). Second- and
third-degree polynomial models were tested for each of the 1,000
grouping levelsindependently.

We used a weighted polynomial model, with |4| values weighted
as a function of the number of trials in each |4]. Across all grouping
levels, the number of trials per |4| within a level ranged from 2 to 401
(median, 5trials). As small trial counts may introduce noise in standard
deviation estimates, these cases were downweighed in the model fit-
ting. This approach avoided binning or applying moving averages over
the |4]| values, thereby preserving a high resolution across the 0-90°
angular difference space.

Toevaluate the quality of polynomial fits with different degrees, we
computed the BIC for each tested polynomial-degree model separately
for each groupinglevel (2 x 1,000 times). First, the residuals were cal-
culated as the difference between the observed scatter values and the
predicted values from the polynomial fit. The sum of squared residuals
(SSR) was calculated by first weighing the residuals by the number of
trials for each |4]. The BIC was then calculated using the formula:

BIC = n x Iog(s,sl—R) + k x log(n) 1)

where n is the number of |4] values, at a certain grouping level, for
which more than one trial is available, and k is the number of model
parameters (equal to the polynomial degree plus one for theintercept).
The BIC was used to balance model complexity and goodness of fit,
penalizing overly complex models. To select the optimal polynomial
degree for each grouping level, we calculated the BIC for second- and
third-degree polynomial fits and chose the degree with the lowest
BIC.Ifthe second-degree fit satisfied the condition BIC, < BIC; + 2, the
second degree was selected as the optimal fit.

The final best-fit polynomial at each grouping level, mostly a
second-degree polynomial (for 953 levels out 0f1,000), was then evalu-
ated across the full |4] range (0-90°). Three fits producing unrealistic
(for example, negative) scatter values were excluded from further
analysis. This procedureyielded estimates of error scatter as a function
of || for each grouping level, enabling robust comparison of scatter
trends within and across datasets.

Following the main objective of the study—whether serial depend-
enceimproves performance by reducing error scatter for highly similar
compared with dissimilar stimuli—we extracted model predictions
at three specific points along the |4] axis: iso (|4] = 0°), fully identical
consecutive stimuli; mid (|| = 45°), intermediate stimulus difference;
and ortho (|4] = 90°), maximally different stimuli. The advantage of
the polynomial fitting approach is that it allowed us to robustly esti-
mate the error scatter at these critical points, for which the number
of available trials can be low in some cases, by using information from
all available data (from |4]| = 0° to 90°). The estimated values of error
scatter at these three critical points were then submitted to further
statistical analysis (see ‘LMM’ below; and ‘Control analysis’ in Supple-
mentary Information for the validation of polynomial estimates using
amodel-free approach).

Thelogic of our analysis rests on the well-established assumption
that, for attractive forms of serial dependence, orthogonal stimuli
(ortho) lie outside the range of the effect’ and therefore provide the
most appropriate reference for testing superiority effects. These
effects, if present, should specifically arise from attractive serial
dependence at small orientation differences, with the strongest
impact expected at theiso level. Indeed, the models considered here
consistently predict a difference between iso and ortho, with the
ortho level approximating the ‘baseline’ condition of no attractive
serial dependence (Fig. 3a).

LMM

We implemented an LMM in MATLAB using the fitime function. The
dependent variable was the predicted error scatter (ES) (see ‘Model-
ling the error scatter’), and the fixed effect was a categorical predictor
representing the three levels of stimulus differences defined above (iso,
mid and ortho), which we refer to as the similarity index (SI).

To account for variability at multiple nested levels, we specified a
maximal random-effects structure, including dataset-level variability
(random effect: codenum), participant-level variability (random effect:
obsid) and repeated measurements within participants across condi-
tions (random effect: codenum:obsid). All random effects included
both an intercept and a random slope for the effect of SI. The model
formulawas:

ES ~ SI + (1 + Sl|obsid) + (1 + Sljcodenum) + (1 + Sljcodenum : obsid)
2)

The fixed effects of interest included the intercept, represent-
ing the level of scatter in the iso condition (where the previous and
current stimuli were identical), and the two coefficients quantify-
ing the differencesin scatter betweeniso and mid and between iso
and ortho.

To assess the significance of including the full SI (iso, mid and
ortho) as afixed effect, we compared the fullmodel to areduced model.
Inthereduced model, the Sl was replaced with asimplified categorical
variable (SIr) with fewer levels, specifically recodingiso asidentical to
ortho, resulting intwo categoriesinstead of three. The reduced model
formulawas:

ES ~ SIr + (1 + Slr|obsid) + (1 + SIrjcodenum) + (1 + SIr|codenum : obsid)
3)

Both the full and reduced models were fit using the fitime func-
tion, and their BIC values were extracted. The difference in BIC (ABIC)
between the reduced and full models was calculated as:

ABIC = BIC\eqyceq — BICs 4)

where alower BIC value indicates a better-fitting model after account-
ing for model complexity. To quantify the relative evidence in favour
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of the reduced model compared with the full model, the Bayes factor
was calculated using the formula:

1
BF reduced over full = eABT/Z ()]

A ABIC > 0 and BF .gyceqoverrunt < 1 provide evidence in favour of the
fullmodel, indicating a significant difference in error scatter between
the iso and ortho levels. Conversely, a ABIC < 0 and BF .yyced over fun > 1
suggest that the reduced model provides a better fit, implying that
error scatter at theiso and ortho levels is comparable.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets containing standardized raw data for the mega-analysis
areavailable at https://github.com/aozkirli/Large-scale-mega-analysis-
on-serial-dependence/tree/main. The use of any part of this compiled
datasetin future studies requires citation of both this publicationand
the original source studies from which the data were obtained.

Code availability
The analysis code can be found at https://github.com/aozkirli/
Large-scale-mega-analysis-on-serial-dependence/tree/main.
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