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Large-scale mega-analysis indicates that 
serial dependence deteriorates perceptual 
decision-making
 

Ayberk Ozkirli    1  , Andrey Chetverikov    2 & David Pascucci    1,3,4

For over a century, research has shown that human perceptual decisions are 
systematically influenced by prior perceptual experiences, a phenomenon 
known as serial dependence. It has recently been suggested that serial 
dependence can improve perceptual decision-making by mitigating 
uncertainty and reducing variability in perceptual estimates—leading to 
a superiority effect. However, this claim remains largely untested. Here 
we present a large-scale analysis, compiling the most extensive dataset of 
serial dependence studies from the past decade. Contrary to the proposed 
superiority effect, our findings indicate that serial dependence deteriorates 
rather than improves perceptual decision-making. These results challenge 
prevailing models and emphasize the need to rethink serial dependence and 
its role in human perception, cognition and behaviour.

Over the past decade, an unprecedented number of studies have investi-
gated the phenomenon of serial dependence, in which human decisions 
are biased towards recent perceptual history1–3. Evident across a wide 
range of paradigms and stimuli, serial dependence has emerged as 
one of the most pervasive effects in human perception and cognition4.

A classic example is the systematic bias observed in tasks where 
participants reproduce a basic feature of a visual stimulus, such as its 
orientation, across a series of trials. Participants’ reports are attracted 
towards the feature of the stimulus shown on preceding trials—reveal-
ing a positive or attractive form of serial dependence that appears 
stable and reliable within individuals2,5. Strikingly, serial dependence 
extends beyond basic visual features such as orientation, colour and 
motion1,6–13 to more complex and abstract judgements, including 
emotion14,15, aesthetics16, sense of agency17 and even attractiveness in 
online dating18. This suggests that serial dependence is not merely a 
low-level perceptual bias but a fundamental aspect of brain function, 
pervasive across species and task domains4,19,20.

The ubiquity of serial dependence has inspired novel compu-
tational models of perception and cognition11,21–24 and motivated 
clinical research on its relevance in both typical and atypical brain 

function25–27. However, the mechanisms underlying serial depend-
ence and its implications for perception remain debated3. Is serial 
dependence a bug or a feature? A prevailing view suggests that serial 
dependence serves a beneficial role: by integrating past and present 
stimuli, the perceptual system constructs a coherent and temporally 
smoothed representation of the world, reducing uncertainty and 
improving perceptual performance22,28. This idea is central to influen-
tial models of serial dependence—in particular, the cue integration22 
and Bayesian models23,29.

These models, developed to explain the bias due to serial depend-
ence, also predict clear effects on the variability of perceptual esti-
mates, or error scatter. Specifically, when consecutive stimuli—such 
as orientations or motion directions—are highly similar, these models 
predict a decrease in error scatter (that is, more precise perceptual 
reports) compared with a hypothetical scenario without serial depend-
ence (See ‘Results’ section for model predictions). We refer to this as 
a superiority effect30, as performance improves due to serial depend-
ence. However, this prediction remains largely untested.

While there is substantial evidence for systematic biases in per-
ceptual judgements due to serial dependence, empirical support for 
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(that is, lower scatter) in the iso condition (|Δ| = 0°) than in the mid 
(|Δ| = 45°) and ortho (|Δ| = 90°) conditions—an effect that would not 
be observed in the absence of serial dependence.

To test for superiority effects in empirical data, we first mod-
elled the error scatter as a function of |Δ|, using a weighted, flexible- 
degree polynomial fit at the individual grouping level (Methods). 
Stimulus-specific biases were removed prior to modelling to pre-
vent critical confounds (see ‘Confounding effect of stimulus-specific 
biases’ in Supplementary Information). The pattern clearly revealed 

superiority effects is scarce, with only a few studies evaluating this 
phenomenon22,29,31. As research on serial dependence continues to 
grow and expand across domains, testing this key prediction is essen-
tial for understanding the true functional role of serial dependence in 
perception and cognition.

Here we tested the superiority effect by compiling the largest 
existing collection of datasets from the past decade, comprising 49 
datasets from 22 studies1,5,8–10,22,26,29,32–59 with more than half a million 
trials of orientation and motion direction reproduction tasks. In a 
targeted analysis, we tested whether human perceptual performance, 
quantified as the error scatter in reproduction responses, improves 
as a function of the similarity between consecutive visual stimuli, as 
predicted by the superiority effect. Specifically, we tested the predic-
tion that perceptual precision should improve (that is, error scatter 
should be lower) when consecutive stimuli are similar compared with 
when they are highly dissimilar.

Contrary to the prevailing hypothesis, we found no evidence for 
a superiority effect. Instead, our results provided decisive evidence 
against it: perceptual precision remained comparable when consecu-
tive stimuli were either identical or highly dissimilar, with a deteriora-
tion in between.

These findings challenge the notion that serial dependence is an 
unequivocally beneficial feature and call for a rethinking of its role in 
perception, cognition and behaviour. Furthermore, by compiling the 
largest dataset on serial dependence to date—including single-trial 
data in both raw and preprocessed formats using a standardized pipe-
line—this work provides an unprecedented resource for the research 
community to systematically test theoretical predictions, replicate 
findings and explore novel questions about the mechanisms and con-
sequences of serial dependence.

Results
We analysed 49 datasets extracted from various experiments and 
conditions, involving 22 studies and more than half a million trials 
(Methods). The datasets included continuous reproduction tasks with 
orientation or motion stimuli (Fig. 1 and Table 1). In these tasks, observ-
ers were presented with a sequence of trials and asked to reproduce 
the relevant feature—orientation or motion direction—on each trial 
through adjustment responses.

Serial dependence was evident as a bias in adjustment errors 
towards the feature shown on the preceding trial, particularly for 
small absolute angular differences between current and previous 
stimuli (|Δ|; Methods and Fig. 2). Despite variations in paradigms, 
stimuli and conditions, most datasets showed consistent positive 
serial dependence: adjustment errors were systematically biased 
towards the previous trial feature, with a positive effect across all 
datasets (mean, 1.06°; median, 0.99°). The error scatter, quantified 
as the overall standard deviation of adjustment errors (Fig. 1c), varied 
substantially across datasets (Fig. 2).

According to the hypothesis that serial dependence enhances 
perceptual performance, leading to a superiority effect, performance 
should improve and error scatter should decrease when |Δ| between 
the current and previous stimuli is small or zero (that is, when the 
stimuli are highly similar). Figure 3a illustrates explicit examples of 
this predicted pattern, derived from simulated data based on the cue 
integration and Bayesian models at varying levels of overall scatter. 
In both models, the current and previous stimuli are integrated while 
accounting for the uncertainty in their perceptual representations, 
albeit through different computational principles (see ‘Reference 
models’ in Supplementary Information).

As shown, both models predict the characteristic bias pattern 
observed in many studies2,3 but also a specific effect on scatter: error 
scatter decreases below the baseline imposed in the simulations, as 
the similarity between the current and previous stimuli increases 
(Methods). In particular, both models predict higher precision  
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Fig. 1 | Experimental paradigms and serial dependence. a,b, Illustration of 
two widely used paradigms: orientation reproduction tasks (a) and motion 
direction reproduction tasks (b). In orientation tasks, participants reproduced 
the perceived tilt of a Gabor patch using a circular response tool. In some 
datasets, a mask was presented after the stimulus to minimize after-effects. In 
motion direction tasks, participants reported the perceived direction of motion 
using a response tool rotating within a 360° circular space. Panel b illustrates a 
post-cueing paradigm adapted from ref. 9 (Experiments 1–2). A summary of the 
paradigms is provided in Table 1, with further details available in the referenced 
studies. c, Error distribution for an example subject in an orientation task. 
Single-trial errors are plotted against the difference between the target feature 
(for example, orientation) in two consecutive trials (Δ, past minus present, in 
degrees). The plot exhibits a typical attractive bias towards the past, with positive 
errors when Δ is positive and negative errors when Δ is negative, particularly for 
small Δ values. The labels ‘Iso’, ‘Mid’ and ‘Ortho’ indicate error distributions when 
the difference between the current and prior stimulus orientations is 0° (iso), 
45° (mid) or 90° (ortho). The plot also illustrates the process of error folding, in 
which errors for negative Δ values (highlighted in blue) are flipped in sign and 
combined with their corresponding positive Δ values (in orange). This procedure 
helps characterize the error distribution in the presence of bias (see Methods for 
details). The error scatter, defined as the standard deviation of the folded error 
distribution (shown in grey), is then computed under the assumption that errors 
are symmetrically distributed around Δ = 0°.
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an inverted U-shaped relationship, with error scatter increasing for 
intermediate ∣Δ∣ and decreasing again for larger ∣Δ∣ values (Fig. 3b).

We then evaluated differences in the error scatter magnitude 
estimated with the polynomial fit at the three key ∣Δ∣ values using a 
linear mixed-effects model (LMM). The fixed effect in the model was a 
categorical predictor with the three angular differences iso, mid and 
ortho. The LMM accounted for random effects at multiple hierarchical 
levels, including participants, datasets and their nested interactions 
(see Methods for a detailed description).

The fixed-effect estimates revealed a significant increase in error 
scatter from iso to mid (t2988 = 8.62, P < 0.001). However, no significant 
difference was observed between iso and ortho (t2988 = 0.36, P = 0.717), 
indicating comparable error scatter (Fig. 4). Importantly, while het-
erogeneity in error scatter at iso was substantial across observers and 
experiments, the relative modulation by stimulus similarity (that is, 
differences between iso and mid and between iso and ortho) was highly 
consistent (see ‘Assessing heterogeneity in LMM results’ in Supplemen-
tary Information), and the overall pattern was comparable between 
orientation and motion stimuli (Supplementary Fig. 7).

To further evaluate these findings, we fit a second, reduced LMM 
by merging the iso and ortho categories. A Bayesian information cri-
terion (BIC) comparison between the full and reduced models yielded 
a ΔBIC of −67.84, resulting in a Bayes factor (BFreduced over full) of >100 in 

favour of the reduced model. This provides decisive evidence against 
the existence of a superiority effect due to serial dependence. That is, 
error scatter was comparable whether the current and previous stimuli 
were identical (iso) or differed by 90° (ortho).

These findings were further validated using a non-parametric bin-
ning approach (see ‘Control analysis’ in Supplementary Information). 
Note that the two reference models, the cue integration and Bayesian 
models, always predict a reduction of the error scatter in the iso com-
pared with the ortho condition, thus predicting a pattern incompatible 
with our findings (Fig. 3a).

Discussion
Serial dependence is a pervasive aspect of human behaviour and 
has become an expanding field of research in recent years. Emerg-
ing perspectives suggest that integrating past and present sensory 
information serves a functional role by reducing the variability of 
perceptual estimates when consecutive stimuli are similar, leading 
to a superiority effect—that is, enhanced perceptual precision22,28. 
In this study, we tested this hypothesis using the largest collection 
of single-trial data employed in serial dependence research over 
the past decade. We analysed 49 datasets, comprising over half a 
million trials, using standardized procedures while controlling for 
potential confounds. Contrary to the predicted superiority effect, 
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Fig. 2 | Summary of bias and error scatter across 49 datasets. The bias (left) 
is computed as the average folded error within the 0–45° |Δ| range (Methods). 
Positive values indicate an attractive bias towards the previous trial’s orientation 
or motion direction, while negative values indicate a repulsive bias away from 
it. The error scatter (right) is quantified as the overall standard deviation of 
reproduction errors (x axis). The y axis lists the datasets, with the median across 
all datasets shown at the bottom (grey box plots and distributions). Each dataset 
is visualized using box plots overlaid on individual participant distributions, with 
dots representing individual subject values. In the median plot at the bottom, 

each dot represents the average bias of a dataset. In the bias plot (left), the 
central white circles, positioned at the median of each distribution, represent 
the reference effect size (g = 0.2). The surrounding coloured circles, outlined in 
black, indicate the effect size of each dataset relative to this reference. In the  
error scatter plot (right), the white dots mark the median value for each dataset. 
In the box plots, the lower and upper edges of the box correspond to the 25th and 
75th percentiles, and the whiskers extend to the most extreme values within  
1.5 times the interquartile range from the upper and lower quartiles. The violin 
plots represent the distribution of the data using a kernel density estimate.
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our results provide no evidence that serial dependence improves 
perceptual precision. Instead, our findings suggest a detrimental 
effect on perceptual performance.

We investigated how serial dependence influences error scatter, 
an inverse measure of perceptual precision, in orientation and motion 
direction reproduction tasks—two of the most widely used paradigms 
in the field3. Specifically, we compared error scatter across three key 
angular differences between consecutive stimuli: iso (identical stimuli), 
mid (45° difference) and ortho (90° difference). If serial dependence 
indeed enhances perceptual precision, error scatter should be the 
lowest in the iso condition, where current and previous stimuli are 
identical22,29. However, we found comparable error scatter between 
the iso condition (that is, when consecutive stimuli were identical) and 
ortho condition (that is, when stimulus differences were maximal), with 
an increase at intermediate differences (mid condition).

This pattern deviates in a crucial way from predictions made by 
the dominant normative models of serial dependence, including cue 
integration and Bayesian frameworks22,23,29,31. These models assume 
that recent perceptual history acts as a prior, combining with current 
sensory evidence to minimize uncertainty. Consequently, they predict 
the lowest error scatter when past and present stimuli strongly overlap 
(for example, at iso), with larger error scatter at greater angular differ-
ences (for example, at the mid and ortho conditions).

Although the models differ in their specific predictions about the 
shape of this pattern (Fig. 3a), none predict that error scatter at the 
ortho distance will be comparable to that at the iso distance. Rather, 
they assume that as stimuli become more dissimilar, the influence of 

serial dependence weakens2,3, and performance approaches baseline 
levels where serial dependence has little to no effect. Thus, these mod-
els and the related views predict always lower error scatter in the iso 
condition than in the ortho condition. Our results from this large-scale 
analysis, however, clearly contradict these predictions: error scatter 
remained comparable between the iso and ortho conditions.

While our study systematically assesses the effects of serial 
dependence on error scatter in a large sample of datasets, there 
have been a few previous attempts to investigate these effects 
on single studies22,29,31,60,61. For instance, in Fritsche et al.29 (data-
sets 18–23), two out of three experiments qualitatively supported 
superiority effects, while the third resembled the overall pattern 
observed here. In the Supplementary Information, we show that 
such superiority-like patterns emerge spuriously from interactions 
between stimulus-specific biases and angular differences between 
current and previous stimuli. If uncorrected, these biases introduce 
systematic variance in reproduction errors, confounding estimates 
of error scatter and its true relation with serial dependence, eventu-
ally leading to artificial differences between iso and ortho conditions 
(see ‘Confounding effect of stimulus-specific biases’ in Supplemen-
tary Information). Across several control analyses, we show that 
these stimulus-specific modulations—previously unknown and 
overlooked in earlier work—are unrelated to classic serial depend-
ence effects (Supplementary Fig. 5b) and may represent a distinct 
form of history dependence that warrants dedicated investigation. 
After we controlled for this confound, both the artificial increase 
in overall error scatter and the apparent superiority effects largely 
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Fig. 3 | Bias and error scatter as functions of |Δ| in model predictions and 
empirical data. a, Predictions from two models of serial dependence (see 
‘Reference models’ in Supplementary Information for detailed formulations): the 
cue integration model (first column) and the Bayesian model (second column), 
showing bias (first row) and error scatter (second row) as functions of |Δ|. The 
three key angular differences analysed (iso, mid and ortho) are marked on the 
x axis. The colour gradient from dark to light violet represents simulations 
with increasing baseline scatter (see ‘Reference models’ in Supplementary 
Information), ranging from 5° to 20°, respectively. In the bias plots (first row), 
positive values on the y axis indicate attraction towards the previous stimulus 
feature. In the scatter plots (second row), the y axis represents error scatter 

normalized to the baseline level (that is, the baseline scatter imposed in each 
simulation (Supplementary Information), here highlighted by the dashed 
black line). Note that we simulated a broad range of baseline scatter values to 
show that, regardless of the value simulated, the error scatter at iso is always 
predicted to be smaller than that in the ortho condition for both models. 
b, Empirical results from 49 datasets, showing bias (top) and error scatter 
(bottom) as functions of |Δ|. The black lines represent average smoothed data 
across all grouping levels, using a kernel of 11° for both bias and scatter. The 
shaded areas represent 95% confidence intervals (CIs). In the error scatter plot, 
the blue line and shaded intervals represent estimations from the best-fitting 
polynomial model (Methods and Results).
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disappeared across datasets, including those from Fritsche et al.29 
(Supplementary Fig. 2).

Despite our approach to removing confounds and standardizing 
preprocessing, we cannot rule out the possibility that subtle superiority 
effects exist or may be better revealed with paradigms other than repro-
duction tasks60. However, any such effect, if existing, must be extremely 
small compared with the dominant pattern: a robust increase in error 
scatter at intermediate angular differences (the mid condition). This 
finding, not fully captured by existing models, underscores the need 
for revised theoretical accounts of how serial dependence influences 
the variability of perceptual estimates.

What could explain comparable performance when consecutive 
stimuli either maintain or break continuity? One possibility is the 
interplay between attractive and repulsive serial dependence effects, 
which have been proposed as competing mechanisms at different 
processing levels11,31,62. Repulsive effects, often observed as negative 
deflections at the tails of the serial dependence bias function (Fig. 3b, 
top), are typically attributed to low-level adaptation mechanisms11,31. 
Such mechanisms have been linked to enhanced neuronal selectivity 
at orthogonal orientations following brief adaptation63, which in turn 
could influence perceptual precision. However, to our knowledge, no 
studies have demonstrated that repulsive serial dependence effects 
selectively reduce error scatter for large stimulus differences, at least 
within the paradigms commonly used. Moreover, the studies analysed 
here were designed to enhance attractive serial dependence while 
minimizing adaptation and repulsive effects (for example, through 
brief, low-contrast stimuli and noise masks).

Instead, we propose that the error scatter pattern reflects inter-
ference from contextual stimuli, a phenomenon widely observed in 
spatial vision30,64,65 and working memory66,67. In this framework, the 
representation of the current stimulus results from a superposition 
of the actual stimulus and contextual influences. When consecutive 
stimuli share identical features, interference is minimal, because their 
representations fully overlap. However, as differences in stimulus 
features increase, interference distorts the representation, leading to 
larger errors. This interpretation aligns with our results, particularly if 
interference effects diminish when stimuli become highly discernible, 
producing comparable performance in the iso and ortho conditions. 
In the context of serial dependence, this suggests that lingering traces 
of previous stimuli impair rather than enhance perceptual estimates 
by interfering with current representations.

This account implies fundamentally different effects and mecha-
nisms than those proposed by accounts predicting a superiority effect. 
While we highlight interference as a plausible alternative explanation, 
the main purpose of this work was the mega-analysis itself, rather than 
advocating for a new model. Future studies will be needed to determine 
whether the observed error scatter patterns are better explained by 
the coexistence of two distinct beneficial mechanisms—one attractive 
at iso and the other repulsive at ortho—or, more parsimoniously, by 
interference effects that scale with stimulus dissimilarity.

Our findings also relate to broader frameworks linking the 
effects of temporal and spatial context under a shared computa-
tional mechanism68. These frameworks suggest that contextual inte-
gration—whether across time (serial dependence) or space (visual 
crowding)—aims to minimize uncertainty. A recent study on visual 
crowding, for instance, reported that flankers iso-oriented to a target 
reduced error scatter compared with orthogonal target-flanker ori-
entations or a target-only condition69. However, a replication study 
failed to find such superiority effects, instead revealing comparable 
error scatter for iso and ortho flankers, closely mirroring the pattern 
observed in our serial dependence study30. This result is consistent 
with prior reports in the crowding literature70–73. Notably, in spatial 
crowding studies, a clear baseline can be established by measuring 
error scatter in the absence of flankers, making it easier to isolate 
contextual effects. Thus, our findings, together with recent results in 

visual crowding, suggest that error scatter—and therefore the preci-
sion of perceptual estimates—is comparable when contextual stimuli 
are either highly similar or highly dissimilar to the target stimulus, 
challenging the assumption that perceptual precision necessarily 
benefits from contextual effects.

We propose that interference should be considered a viable alter-
native to existing models, offering a parsimonious explanation for 
the observed deviations from normative predictions. However, other 
novel or existing models—such as those based on working memory 
dynamics or entanglement of sensory signals24,74—should be evaluated 
against existing frameworks to determine which best accounts for the 
error scatter pattern observed in our study. This does not imply that 
integrating past and present sensory information is universally detri-
mental—perceptual continuity and stability remain key adaptive func-
tions of the brain28. Nor do we claim that Bayesian and cue integration 
models are fundamentally incorrect. The ability to integrate multiple 
sources of information is a core function of the brain, and these models 
provide valuable predictive frameworks75. However, in the context of 
classic serial dependence paradigms, where stimuli are randomized 
and independent across trials, there is no functional advantage to 
combining past and present sensory inputs. If traces of prior stimuli 
persist, it is plausible that they interfere with current perceptual deci-
sions and thus deteriorate performance.

Conversely, the amount of interference may be decreased when 
stimuli are temporally correlated. If serial dependence were an adap-
tive mechanism, one would expect it to be strongest under conditions 
of temporal regularity. Paradoxically, however, studies introducing 
temporal correlations in stimulus sequences have reported weak serial 
dependence effects60, or even a reduction in serial dependence relative 
to uncorrelated sequences, and stronger repulsive biases of stimulus 
history34,76. This apparent paradox closely parallels effects observed in 
spatial vision: in visual crowding, interference from flankers in target 
recognition is reduced when flankers form a coherent spatial configu-
ration—a phenomenon known as uncrowding64,77. Crucially, however, 
performance in crowding and uncrowding is never superior to base-
line performance with the target alone30. The pattern of error scatter 
reported here suggests that an analogous form of interference—one 
that current models fail to capture—is also at play in serial dependence.

In sum, our findings impose important constraints on broad 
claims about the role of serial dependence across different tasks and 
processing domains. We provide strong evidence against the idea 
that serial dependence enhances perceptual precision. Instead, our 
results suggest that serial dependence may be better explained as a 
form of interference, which increases response variability rather than 
reducing it. These findings challenge prevailing theories and call for a 
conceptual and computational reassessment of serial dependence. To 
support this, we provide an open-access, automated analysis pipeline, 
enabling researchers to contribute additional datasets and expand a 
continuously growing large-scale analysis of serial dependence. This 
open framework will allow for systematic testing of alternative models, 
fostering a more comprehensive understanding of how perceptual 
history shapes behaviour.

Methods
Dataset selection and exclusion criteria
We conducted a search on PubMed using the keyword ‘serial depend-
ence’ for studies published between 2014 (from the initial study of 
Fischer and Whitney1) and 2024. Studies were selected on the basis of 
the following criteria:

	 (1)	 Single-trial data publicly available online
	 (2)	 Adjustment tasks involving orientation or motion stimuli  

with circular responses (for example, participants reproducing 
the orientation of a Gabor patch or the motion direction of  
dot clouds)
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(3)	 Trial-by-trial orientation or motion direction changes (Δ) 
covering 0° to ±90°, using uniform or randomly determined 
trial-by-trial changes in Δ.

From the 198 studies identified in the search, 20 met these criteria 
(highlighted in orange in Supplementary Table 1). However, because 
the dataset from ref. 29 overlapped with that from ref. 62, the final 
count from the database effectively comprised 19 unique studies. 
Additionally, three studies that satisfied the inclusion criteria but were 
not part of the PubMed search results were included38,45,53, resulting in 
22 studies in total.

The selected studies are summarized in Table 1, along with key 
information (for detailed descriptions of each task and apparatus, 
please refer to the original studies). Of the 22 studies included, several 

featured multiple experiments and repeated-measures designs with 
various conditions. To account for the potential influence of these 
conditions on the strength of serial dependence and error scatter, 
each experiment and within-experiment condition was treated as a 
separate dataset. This resulted in a total of 49 datasets, comprising 
733 participants and 619,848 trials.

Data preprocessing
Data processing was done by using MATLAB v.2023b78. To ensure con-
sistency in the analysis pipeline, we applied a standardized, minimum 
data-cleaning procedure to all datasets. It is important to note that this 
procedure, along with the resulting estimates, may differ from those 
used in the original studies.

The preprocessing involved two key steps: removing outliers 
and correcting for stimulus-specific bias (for example, non-uniform 
error distribution across orientations or motion directions). Below, 
we outline the rationale and approach used for each step.

Removal of outliers. Outlier errors can compromise estimates of serial 
dependence effects, in terms of both bias and variability57. Several 
approaches to outlier removal have been previously used, such as 
excluding errors above or below an arbitrary threshold or removing 
values that deviate by a certain number of standard deviations from 
the mean (typically three standard deviations)29. Here we adopted a 
two-stage non-parametric approach based on quartiles and the inter-
quartile range, opting for a robust, assumption-free method.

First, we marked as outliers all absolute errors greater than 90°. 
This step was applied only to datasets involving motion direction judge-
ments, where errors exceeding 90° indicated reports of the orthogo-
nal or opposite motion direction. This helped avoid interpretational 
issues in cases where participants may have confused opposite motion 
directions. In orientation tasks, errors were already constrained to a 
maximum of 90° due to the circular nature of the 0–179° scale, with 
errors calculated as the acute angle. Additionally, trials with adjustment 
times (when available) exceeding 10 seconds were excluded.

In the second stage, we used the MATLAB isoutlier function with 
the ‘quartiles’ method. This approach identifies outliers as any errors 
more than 1.5 interquartile ranges above the upper quartile or below 
the lower quartile. This procedure was applied separately for each 
participant, experiment and condition. Only trials with |Δ| ≤ 90° that 
were not identified as outliers in either of the two stages were included 
in the subsequent analyses. This choice was motivated by the fact 
that judgements regarding motion directions that differ by 180° can 
be influenced by the orientation information contained in motion 
streaks6,38,51,79, introducing potential confounds where 0° and 180° 
might be represented in a similar, rather than orthogonal, way.

Removal of stimulus-specific biases. Adjustment responses with 
circular features (for example, orientation or motion direction) are 
systematically affected by stimulus-specific biases, where errors  
are non-uniformly distributed around the actual stimulus values.  
These biases often manifest as deviations away from cardinal direc-
tions and toward oblique angles. While such stimulus-specific biases 
are typically considered independent of serial dependence effects, 
they introduce additional variance in the error distribution. To 
address this, several studies have employed techniques that remove 
these biases, such as fitting polynomial or sinusoidal functions to the 
error as a function of the stimulus angle and using the residuals for 
further analysis11,23,46,80.

Here we used a similar residualization approach while account-
ing for the circular nature of the stimuli in orientation and motion 
direction tasks. Specifically, we fitted the errors with a circular-linear 
model, using a set of periodic basis functions defined by the sine and 
cosine of the stimulus angle presented on each trial, up to the sixth 
harmonic. This set of periodic predictors, along with an intercept to 

Table 1 | The summary of datasets included in the final 
analysis, listed alphabetically

ID Study Reproduce Datasets N All trials Clean 
trials

1 Abreo et al.32,33 Orientation 1 36 6,754 6,335

2 Blondé 
et al.34,35

Orientation 1 17 2,380 2,228

3 Ceylan and 
Pascucci36*

Orientation 1 20 6,000 5,822

4 Ceylan et al.8,37 Orientation 4 48 19,200 18,662

5 Chetverikov 
and Jehee38,39

Motion 2 18 19,836 8,389

6 Cicchini 
et al.22,40

Orientation 1 6 12,300 11,833

7 Fischer and 
Whitney1*

Orientation 1 4 3,328 3,197

8 Fischer et al.9,41 Motion 4 109 176,256 86,343

9 Fritsche and 
de Lange42

Orientation 2 34 19,584 19,089

10 Fritsche et al.29 Orientation 6 71 67,148 65,197

11 Gallagher and 
Benton43,44

Orientation 2 20 16,420 15,899

12 Geurts et al.45 Orientation 1 32 15,520 14,854

13 Houborg 
et al.46*

Orientation 2 31 6,200 5,852

14 Houborg 
et al.47,59

Orientation 2 32 31,720 31,168

15 Kondo et al.5* Orientation 4 76 76,000 73,234

16 Lau and 
Maus48,49

Orientation 1 29 15,404 13,732

17 Moon and 
Kwon10,50

Motion 1 8 13,170 6,792

18 Moon et al.51,52 Motion 3 24 39,330 20,466

19 Ozkirli and 
Pascucci53,54

Orientation 6 56 22,328 21,622

20 Pascucci 
et al.26,55

Orientation 1 26 20,800 13,512

21 Sadil et al.56* Orientation 1 16 24,240 23,537

22 Samaha 
et al.57,58

Orientation 2 20 5,930 5,501

Total 49 733 619,848 473,264

The analysis included 22 studies, many of which featured multiple experiments and 
repeated-measures designs with multiple conditions. These were preprocessed separately, 
resulting in 49 datasets, 733 globally unique participants and a total of 619,848 trials. After 
data cleaning and restricting of the angular difference (∣Δ∣) to ≤90°, 473,264 trials remained. 
Motion datasets had a notable reduction in trial counts due to this restriction. *Data received 
through communication with the original authors.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02362-8

account for any systematic bias in reporting features as more clock-
wise or counterclockwise, was fitted to the errors using ordinary 
least squares regression via the pseudoinverse. The pseudoinverse 
ensured numerical stability and minimized the issue of multicollin-
earity. This approach effectively removed periodic stimulus-specific 
biases (Supplementary Fig. 1) and helped avoid drastic confounds in 
the estimation of the error scatter (Supplementary Figs. 3 and 4). As 
an alternative approach, we also used the circhelp package in R81,82 to 
remove orientation bias confounds from each dataset, obtaining fully 
comparable results (not shown).

Modelling the error scatter. As described above, the data were first 
restricted to trials with |Δ| ≤ 90° that were not classified as outliers (76% 
of all trials). Since serial dependence effects are generally symmetric 
for negative and positive Δ (previous minus current orientation), we 
applied a folding approach7,23,46. This method involved flipping the 
sign of errors associated with negative Δ values to align them with 
their corresponding positive Δ values (Fig. 1c). This folding approach 
removed the influence of the serial dependence bias in the estimate of 
error scatter, while also doubling the number of data points per |Δ| and 
increasing the robustness of error scatter estimation.

After the folding step, the error scatter for each |Δ| available 
for that participant and condition was calculated as the standard 
deviation of the errors within that |Δ|. Any |Δ| with only one trial was 
excluded from further analysis, as its standard deviation would be 
zero. The relationship between error scatter and |Δ| was then modelled 
using polynomial fits, conducted separately at the level of experi-
ment–participant–condition (that is, grouping level). Second- and 
third-degree polynomial models were tested for each of the 1,000 
grouping levels independently.

We used a weighted polynomial model, with |Δ| values weighted 
as a function of the number of trials in each |Δ|. Across all grouping 
levels, the number of trials per |Δ| within a level ranged from 2 to 401 
(median, 5 trials). As small trial counts may introduce noise in standard 
deviation estimates, these cases were downweighed in the model fit-
ting. This approach avoided binning or applying moving averages over 
the |Δ| values, thereby preserving a high resolution across the 0–90° 
angular difference space.

To evaluate the quality of polynomial fits with different degrees, we 
computed the BIC for each tested polynomial-degree model separately 
for each grouping level (2 × 1,000 times). First, the residuals were cal-
culated as the difference between the observed scatter values and the 
predicted values from the polynomial fit. The sum of squared residuals 
(SSR) was calculated by first weighing the residuals by the number of 
trials for each |Δ|. The BIC was then calculated using the formula:

BIC = n × log (SSRn ) + k × log(n) (1)

where n is the number of |Δ| values, at a certain grouping level, for 
which more than one trial is available, and k is the number of model 
parameters (equal to the polynomial degree plus one for the intercept). 
The BIC was used to balance model complexity and goodness of fit, 
penalizing overly complex models. To select the optimal polynomial 
degree for each grouping level, we calculated the BIC for second- and 
third-degree polynomial fits and chose the degree with the lowest 
BIC. If the second-degree fit satisfied the condition BIC2 ≤ BIC3 + 2, the 
second degree was selected as the optimal fit.

The final best-fit polynomial at each grouping level, mostly a 
second-degree polynomial (for 953 levels out of 1,000), was then evalu-
ated across the full |Δ| range (0–90°). Three fits producing unrealistic 
(for example, negative) scatter values were excluded from further 
analysis. This procedure yielded estimates of error scatter as a function 
of |Δ| for each grouping level, enabling robust comparison of scatter 
trends within and across datasets.

Following the main objective of the study—whether serial depend-
ence improves performance by reducing error scatter for highly similar 
compared with dissimilar stimuli—we extracted model predictions 
at three specific points along the |Δ| axis: iso (|Δ| = 0°), fully identical 
consecutive stimuli; mid (|Δ| = 45°), intermediate stimulus difference; 
and ortho (|Δ| = 90°), maximally different stimuli. The advantage of 
the polynomial fitting approach is that it allowed us to robustly esti-
mate the error scatter at these critical points, for which the number 
of available trials can be low in some cases, by using information from 
all available data (from |Δ| = 0° to 90°). The estimated values of error 
scatter at these three critical points were then submitted to further 
statistical analysis (see ‘LMM’ below; and ‘Control analysis’ in Supple-
mentary Information for the validation of polynomial estimates using 
a model-free approach).

The logic of our analysis rests on the well-established assumption 
that, for attractive forms of serial dependence, orthogonal stimuli 
(ortho) lie outside the range of the effect2 and therefore provide the 
most appropriate reference for testing superiority effects. These 
effects, if present, should specifically arise from attractive serial 
dependence at small orientation differences, with the strongest 
impact expected at the iso level. Indeed, the models considered here 
consistently predict a difference between iso and ortho, with the 
ortho level approximating the ‘baseline’ condition of no attractive 
serial dependence (Fig. 3a).

LMM
We implemented an LMM in MATLAB using the fitlme function. The 
dependent variable was the predicted error scatter (ES) (see ‘Model-
ling the error scatter’), and the fixed effect was a categorical predictor 
representing the three levels of stimulus differences defined above (iso, 
mid and ortho), which we refer to as the similarity index (SI).

To account for variability at multiple nested levels, we specified a 
maximal random-effects structure, including dataset-level variability 
(random effect: codenum), participant-level variability (random effect: 
obsid) and repeated measurements within participants across condi-
tions (random effect: codenum:obsid). All random effects included 
both an intercept and a random slope for the effect of SI. The model 
formula was:

ES ∼ SI + (1 + SI|obsid) + (1 + SI|codenum) + (1 + SI|codenum ∶ obsid)
(2)

The fixed effects of interest included the intercept, represent-
ing the level of scatter in the iso condition (where the previous and 
current stimuli were identical), and the two coefficients quantify-
ing the differences in scatter between iso and mid and between iso 
and ortho.

To assess the significance of including the full SI (iso, mid and 
ortho) as a fixed effect, we compared the full model to a reduced model. 
In the reduced model, the SI was replaced with a simplified categorical 
variable (SIr) with fewer levels, specifically recoding iso as identical to 
ortho, resulting in two categories instead of three. The reduced model 
formula was:

ES ∼ SIr + (1 + SIr|obsid) + (1 + SIr|codenum) + (1 + SIr|codenum ∶ obsid)
(3)

Both the full and reduced models were fit using the fitlme func-
tion, and their BIC values were extracted. The difference in BIC (ΔBIC) 
between the reduced and full models was calculated as:

ΔBIC = BICreduced − BICfull (4)

where a lower BIC value indicates a better-fitting model after account-
ing for model complexity. To quantify the relative evidence in favour 
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of the reduced model compared with the full model, the Bayes factor 
was calculated using the formula:

BFreducedover full =
1

eΔBIC/2
(5)

A ΔBIC > 0 and BFreduced over full < 1 provide evidence in favour of the 
full model, indicating a significant difference in error scatter between 
the iso and ortho levels. Conversely, a ΔBIC < 0 and BFreduced over full > 1 
suggest that the reduced model provides a better fit, implying that 
error scatter at the iso and ortho levels is comparable.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets containing standardized raw data for the mega-analysis 
are available at https://github.com/aozkirli/Large-scale-mega-analysis-
on-serial-dependence/tree/main. The use of any part of this compiled 
dataset in future studies requires citation of both this publication and 
the original source studies from which the data were obtained.

Code availability
The analysis code can be found at https://github.com/aozkirli/
Large-scale-mega-analysis-on-serial-dependence/tree/main.
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